Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22.191
1.
Cell Genom ; 4(5): 100555, 2024 May 08.
Article En | MEDLINE | ID: mdl-38697121

The complex pathobiology of late-onset Alzheimer's disease (AD) poses significant challenges to therapeutic and preventative interventions. Despite these difficulties, genomics and related disciplines are allowing fundamental mechanistic insights to emerge with clarity, particularly with the introduction of high-resolution sequencing technologies. After all, the disrupted processes at the interface between DNA and gene expression, which we call the broken AD genome, offer detailed quantitative evidence unrestrained by preconceived notions about the disease. In addition to highlighting biological pathways beyond the classical pathology hallmarks, these advances have revitalized drug discovery efforts and are driving improvements in clinical tools. We review genetic, epigenomic, and gene expression findings related to AD pathogenesis and explore how their integration enables a better understanding of the multicellular imbalances contributing to this heterogeneous condition. The frontiers opening on the back of these research milestones promise a future of AD care that is both more personalized and predictive.


Alzheimer Disease , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Humans , Genome, Human , Genomics/methods , Animals
2.
NPJ Syst Biol Appl ; 10(1): 50, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724582

Connectome studies have shown how Alzheimer's disease (AD) disrupts functional and structural connectivity among brain regions. But the molecular basis of such disruptions is less studied, with most genomic/transcriptomic studies performing within-brain-region analyses. To inspect how AD rewires the correlation structure among genes in different brain regions, we performed an Inter-brain-region Differential Correlation (Inter-DC) analysis of RNA-seq data from Mount Sinai Brain Bank on four brain regions (frontal pole, superior temporal gyrus, parahippocampal gyrus and inferior frontal gyrus, comprising 264 AD and 372 control human post-mortem samples). An Inter-DC network was assembled from all pairs of genes across two brain regions that gained (or lost) correlation strength in the AD group relative to controls at FDR 1%. The differentially correlated (DC) genes in this network complemented known differentially expressed genes in AD, and likely reflects cell-intrinsic changes since we adjusted for cell compositional effects. Each brain region used a distinctive set of DC genes when coupling with other regions, with parahippocampal gyrus showing the most rewiring, consistent with its known vulnerability to AD. The Inter-DC network revealed master dysregulation hubs in AD (at genes ZKSCAN1, SLC5A3, RCC1, IL17RB, PLK4, etc.), inter-region gene modules enriched for known AD pathways (synaptic signaling, endocytosis, etc.), and candidate signaling molecules that could mediate region-region communication. The Inter-DC network generated in this study is a valuable resource of gene pairs, pathways and signaling molecules whose inter-brain-region functional coupling is disrupted in AD, thereby offering a new perspective of AD etiology.


Alzheimer Disease , Brain , Gene Regulatory Networks , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Gene Regulatory Networks/genetics , Brain/metabolism , Connectome/methods , Transcriptome/genetics , Gene Expression Profiling/methods , Male , Female , Aged
3.
FASEB J ; 38(10): e23659, 2024 May 31.
Article En | MEDLINE | ID: mdl-38733301

HDAC3 inhibition has been shown to improve memory and reduce amyloid-ß (Aß) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 µM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aß42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 µM RGFP966, without changes in Aß. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.


Alzheimer Disease , Amyloid beta-Protein Precursor , Disease Models, Animal , Histone Deacetylases , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Mice , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice, Transgenic , Brain/metabolism , Brain/pathology , Amyloid beta-Peptides/metabolism , Cell Line, Tumor , Male , Mice, Inbred C57BL , Microglia/metabolism , Phenylenediamines/pharmacology , Acrylamides
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38711368

Common genetic variants and susceptibility loci associated with Alzheimer's disease (AD) have been discovered through large-scale genome-wide association studies (GWAS), GWAS by proxy (GWAX) and meta-analysis of GWAS and GWAX (GWAS+GWAX). However, due to the very low repeatability of AD susceptibility loci and the low heritability of AD, these AD genetic findings have been questioned. We summarize AD genetic findings from the past 10 years and provide a new interpretation of these findings in the context of statistical heterogeneity. We discovered that only 17% of AD risk loci demonstrated reproducibility with a genome-wide significance of P < 5.00E-08 across all AD GWAS and GWAS+GWAX datasets. We highlighted that the AD GWAS+GWAX with the largest sample size failed to identify the most significant signals, the maximum number of genome-wide significant genetic variants or maximum heritability. Additionally, we identified widespread statistical heterogeneity in AD GWAS+GWAX datasets, but not in AD GWAS datasets. We consider that statistical heterogeneity may have attenuated the statistical power in AD GWAS+GWAX and may contribute to explaining the low repeatability (17%) of genome-wide significant AD susceptibility loci and the decreased AD heritability (40-2%) as the sample size increased. Importantly, evidence supports the idea that a decrease in statistical heterogeneity facilitates the identification of genome-wide significant genetic loci and contributes to an increase in AD heritability. Collectively, current AD GWAX and GWAS+GWAX findings should be meticulously assessed and warrant additional investigation, and AD GWAS+GWAX should employ multiple meta-analysis methods, such as random-effects inverse variance-weighted meta-analysis, which is designed specifically for statistical heterogeneity.


Alzheimer Disease , Genetic Predisposition to Disease , Genome-Wide Association Study , Alzheimer Disease/genetics , Humans , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Genetic Heterogeneity
5.
Sci Rep ; 14(1): 10728, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730027

The purpose of this study was to explore the diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease. In this study, we first collected 161 samples from the GEO database (including 87 in the AD group and 74 in the normal group). Subsequently, through differential expression analysis and the iUUCD 2.0 database, we obtained 3450 Differentially Expressed Genes (DEGs) and 806 Ubiquitin-related genes (UbRGs). After taking the intersection, we obtained 128 UbR-DEGs. Secondly, by conducting GO and KEGG enrichment analysis on these 128 UbR-DEGs, we identified the main molecular functions and biological pathways related to AD. Furthermore, through the utilization of GSEA analysis, we have gained insight into the enrichment of functions and pathways within both the AD and normal groups. Further, using lasso regression analysis and cross-validation techniques, we identified 22 characteristic genes associated with AD. Subsequently, we constructed a logistic regression model and optimized it, resulting in the identification of 6 RUbR-DEGs: KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L. In addition, the ROC result showed that the diagnostic model we built has excellent accuracy and reliability in identifying AD patients. Finally, we constructed a lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) regulatory network for AD based on six RUbR-DEGs, further elucidating the interaction between UbRGs and lncRNA, miRNA. In conclusion, our findings will contribute to further understanding of the molecular pathogenesis of AD and provide a new perspective for AD risk prediction, early diagnosis and targeted therapy in the population.


Alzheimer Disease , Ubiquitination , Alzheimer Disease/genetics , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Humans , Gene Expression Profiling , Transcriptome , Gene Regulatory Networks , Databases, Genetic
6.
Alzheimers Res Ther ; 16(1): 106, 2024 May 11.
Article En | MEDLINE | ID: mdl-38730474

BACKGROUND: Previous studies on the associations between serum urate levels and neurodegenerative outcomes have yielded inconclusive results, and the causality remains unclear. This study aimed to investigate whether urate levels are associated with the risks of Alzheimer's disease and related dementias (ADRD), Parkinson's disease (PD), and neurodegenerative deaths. METHODS: This prospective study included 382,182 participants (45.7% men) from the UK Biobank cohort. Cox proportional hazards models were used to assess the associations between urate levels and risk of neurodegenerative outcomes. In the Mendelian randomization (MR) analysis, urate-related single-nucleotide polymorphisms were identified through a genome-wide association study. Both linear and non-linear MR approaches were utilized to investigate the potential causal associations. RESULTS: During a median follow-up period of 12 years, we documented 5,400 ADRD cases, 2,553 PD cases, and 1,531 neurodegenerative deaths. Observational data revealed that a higher urate level was associated with a decreased risk of ADRD (hazard ratio [HR]: 0.93, 95% confidence interval [CI]: 0.90, 0.96), PD (HR: 0.87, 95% CI: 0.82, 0.91), and neurodegenerative death (HR: 0.88, 95% CI: 0.83, 0.94). Negative linear associations between urate levels and neurodegenerative events were observed (all P-values for overall < 0.001 and all P-values for non-linearity > 0.05). However, MR analyses yielded no evidence of either linear or non-linear associations between genetically predicted urate levels and the risk of the aforementioned neurodegenerative events. CONCLUSION: Although the prospective cohort study demonstrated that elevated urate levels were associated with a reduced risk of neurodegenerative outcomes, MR analyses found no evidence of causality.


Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Uric Acid , Aged , Female , Humans , Male , Middle Aged , Alzheimer Disease/genetics , Alzheimer Disease/blood , Alzheimer Disease/epidemiology , Cohort Studies , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/epidemiology , Parkinson Disease/genetics , Parkinson Disease/blood , Parkinson Disease/epidemiology , Prospective Studies , UK Biobank , United Kingdom/epidemiology , Uric Acid/blood
7.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731839

CLEC4G, a glycan-binding receptor, has previously been demonstrated to inhibit Aß generation, yet its brain localization and functions in Alzheimer's disease (AD) are not clear. We explored the localization, function, and regulatory network of CLEC4G via experiments and analysis of RNA-seq databases. CLEC4G transcripts and proteins were identified in brain tissues, with the highest expression observed in neurons. Notably, AD was associated with reduced levels of CLEC4G transcripts. Bioinformatic analyses revealed interactions between CLEC4G and relevant genes such as BACE1, NPC1, PILRA, TYROBP, MGAT1, and MGAT3, all displaying a negative correlation trend. We further identified the upstream transcriptional regulators NR2F6 and XRCC4 for CLEC4G and confirmed a decrease in CLEC4G expression in APP/PS1 transgenic mice. This study highlights the role of CLEC4G in protecting against AD progression and the significance of CLEC4G for AD research and management.


Alzheimer Disease , Lectins, C-Type , Mice, Transgenic , Neurons , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Neurons/metabolism , Mice , Humans , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Brain/metabolism , Brain/pathology , Gene Expression Regulation , Disease Models, Animal
8.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731856

We characterized the therapeutic biological modes of action of several terpenes in Poria cocos F.A Wolf (PC) and proposed a broad therapeutic mode of action for PC. Molecular docking and drug-induced transcriptome analysis were performed to confirm the pharmacological mechanism of PC terpene, and a new analysis method, namely diffusion network analysis, was proposed to verify the mechanism of action against Alzheimer's disease. We confirmed that the compound that exists only in PC has a unique mechanism through statistical-based docking analysis. Also, docking and transcriptomic analysis results could reflect results in clinical practice when used complementarily. The detailed pharmacological mechanism of PC was confirmed by constructing and analyzing the Alzheimer's disease diffusion network, and the antioxidant activity based on microglial cells was verified. In this study, we used two bioinformatics approaches to reveal PC's broad mode of action while also using diffusion networks to identify its detailed pharmacological mechanisms of action. The results of this study provide evidence that future pharmacological mechanism analysis should simultaneously consider complementary docking and transcriptomics and suggest diffusion network analysis, a new method to derive pharmacological mechanisms based on natural complex compounds.


Molecular Docking Simulation , Terpenes , Transcriptome , Terpenes/pharmacology , Terpenes/chemistry , Transcriptome/drug effects , Humans , Wolfiporia/chemistry , Gene Expression Profiling/methods , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Microglia/drug effects , Microglia/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Computational Biology/methods , Animals
9.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732025

Alzheimer's disease (AD) is characterized by amyloid beta (Aß) buildup and neuronal degeneration. An association between low serum vitamin D levels and an increased risk of AD has been reported in several epidemiological studies. Calcitriol (1,25-dihydroxycholecalciferol) is the active form of vitamin D, and is generated in the kidney and many other tissues/organs, including the brain. It is a steroid hormone that regulates important functions like calcium/phosphorous levels, bone mineralization, and immunomodulation, indicating its broader systemic significance. In addition, calcitriol confers neuroprotection by mitigating oxidative stress and neuroinflammation, promoting the clearance of Aß, myelin formation, neurogenesis, neurotransmission, and autophagy. The receptors to which calcitriol binds (vitamin D receptors; VDRs) to exert its effects are distributed over many organs and tissues, representing other significant roles of calcitriol beyond sustaining bone health. The biological effects of calcitriol are manifested through genomic (classical) and non-genomic actions through different pathways. The first is a slow genomic effect involving nuclear VDR directly affecting gene transcription. The association of AD with VDR gene polymorphisms relies on the changes in vitamin D consumption, which lowers VDR expression, protein stability, and binding affinity. It leads to the altered expression of genes involved in the neuroprotective effects of calcitriol. This review summarizes the neuroprotective mechanism of calcitriol and the role of VDR polymorphisms in AD, and might help develop potential therapeutic strategies and markers for AD in the future.


Alzheimer Disease , Calcitriol , Receptors, Calcitriol , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Calcitriol/metabolism , Animals , Polymorphism, Genetic , Genetic Predisposition to Disease
10.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Article En | MEDLINE | ID: mdl-38742194

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Alzheimer Disease , Apolipoprotein E3 , Apolipoprotein E4 , Estradiol , Mice, Transgenic , Ovariectomy , Animals , Estradiol/pharmacology , Female , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Mice , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Humans , Behavior, Animal/drug effects , Amyloid beta-Peptides/metabolism , Disease Models, Animal
11.
Nat Commun ; 15(1): 3796, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714706

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Alzheimer Disease , Ammonia , Metabolomics , Phenotype , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Ammonia/metabolism , Aged , Female , Male , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Bile Acids and Salts/metabolism , Aged, 80 and over , Cohort Studies
12.
Eur J Med Res ; 29(1): 261, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698427

BACKGROUND: Prior observational research has investigated the association between dietary patterns and Alzheimer's disease (AD) risk. Nevertheless, due to constraints in past observational studies, establishing a causal link between dietary habits and AD remains challenging. METHODS: Methodology involved the utilization of extensive cohorts sourced from publicly accessible genome-wide association study (GWAS) datasets of European descent for conducting Mendelian randomization (MR) analyses. The principal analytical technique utilized was the inverse-variance weighted (IVW) method. RESULTS: The MR analysis conducted in this study found no statistically significant causal association between 20 dietary habits and the risk of AD (All p > 0.05). These results were consistent across various MR methods employed, including MR-Egger, weighted median, simple mode, and weighted mode approaches. Moreover, there was no evidence of horizontal pleiotropy detected (All p > 0.05). CONCLUSION: In this MR analysis, our finding did not provide evidence to support the causal genetic relationships between dietary habits and AD risk.


Alzheimer Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology , Alzheimer Disease/etiology , Humans , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Risk Factors , Feeding Behavior/physiology , Diet/adverse effects , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
13.
Hum Brain Mapp ; 45(7): e26709, 2024 May.
Article En | MEDLINE | ID: mdl-38746977

The high prevalence of conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) makes early prevention of AD extremely critical. Neuroticism, a heritable personality trait associated with mental health, has been considered a risk factor for conversion from aMCI to AD. However, whether the neuroticism genetic risk could predict the conversion of aMCI and its underlying neural mechanisms is unclear. Neuroticism polygenic risk score (N-PRS) was calculated in 278 aMCI patients with qualified genomic and neuroimaging data from ADNI. After 1-year follow-up, N-PRS in patients of aMCI-converted group was significantly greater than those in aMCI-stable group. Logistic and Cox survival regression revealed that N-PRS could significantly predict the early-stage conversion risk from aMCI to AD. These results were well replicated in an internal dataset and an independent external dataset of 933 aMCI patients from the UK Biobank. One sample Mendelian randomization analyses confirmed a potentially causal association from higher N-PRS to lower inferior parietal surface area to higher conversion risk of aMCI patients. These analyses indicated that neuroticism genetic risk may increase the conversion risk from aMCI to AD by impairing the inferior parietal structure.


Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Multifactorial Inheritance , Neuroticism , Parietal Lobe , Humans , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Male , Female , Aged , Parietal Lobe/diagnostic imaging , Parietal Lobe/pathology , Aged, 80 and over , Mendelian Randomization Analysis , Middle Aged , Genetic Predisposition to Disease
14.
CNS Neurosci Ther ; 30(5): e14683, 2024 05.
Article En | MEDLINE | ID: mdl-38738952

INTRODUCTION: Alzheimer's disease (AD) and atherosclerosis (AS) are widespread diseases predominantly observed in the elderly population. Despite their prevalence, the underlying molecular interconnections between these two conditions are not well understood. METHODS: Utilizing meta-analysis, bioinformatics methodologies, and the GEO database, we systematically analyzed transcriptome data to pinpoint key genes concurrently differentially expressed in AD and AS. Our experimental validations in mouse models highlighted the prominence of two genes, NKRF (NF-κB-repressing factor) and ZBTB17 (MYC-interacting zinc-finger protein 1). RESULTS: These genes appear to influence the progression of both AD and AS by modulating the NF-κB signaling pathway, as confirmed through subsequent in vitro and in vivo studies. CONCLUSIONS: This research uncovers a novel shared molecular pathway between AD and AS, underscoring the significant roles of NKRF and ZBTB17 in the pathogenesis of these disorders.


Alzheimer Disease , Atherosclerosis , NF-kappa B , Signal Transduction , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Animals , Signal Transduction/genetics , Signal Transduction/physiology , NF-kappa B/metabolism , NF-kappa B/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Mice , Transcriptome , Gene Expression Profiling , Repressor Proteins/genetics , Repressor Proteins/metabolism , Mice, Transgenic
15.
Cell Death Dis ; 15(5): 333, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740758

Precise polyamine metabolism regulation is vital for cells and organisms. Mutations in spermine synthase (SMS) cause Snyder-Robinson intellectual disability syndrome (SRS), characterized by significant spermidine accumulation and autophagy blockage in the nervous system. Emerging evidence connects polyamine metabolism with other autophagy-related diseases, such as Tauopathy, however, the functional intersection between polyamine metabolism and autophagy in the context of these diseases remains unclear. Here, we altered SMS expression level to investigate the regulation of autophagy by modulated polyamine metabolism in Tauopathy in Drosophila and human cellular models. Interestingly, while complete loss of Drosophila spermine synthase (dSms) impairs lysosomal function and blocks autophagic flux recapitulating SRS disease phenotype, partial loss of dSms enhanced autophagic flux, reduced Tau protein accumulation, and led to extended lifespan and improved climbing performance in Tauopathy flies. Measurement of polyamine levels detected a mild elevation of spermidine in flies with partial loss of dSms. Similarly, in human neuronal or glial cells, partial loss of SMS by siRNA-mediated knockdown upregulated autophagic flux and reduced Tau protein accumulation. Importantly, proteomics analysis of postmortem brain tissue from Alzheimer's disease (AD) patients showed a significant albeit modest elevation of SMS level. Taken together, our study uncovers a functional correlation between polyamine metabolism and autophagy in AD: SMS reduction upregulates autophagy, suppresses Tau accumulation, and ameliorates neurodegeneration and cell death. These findings provide a new potential therapeutic target for AD.


Autophagy , Spermine Synthase , tau Proteins , Animals , tau Proteins/metabolism , Humans , Spermine Synthase/metabolism , Spermine Synthase/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Tauopathies/metabolism , Tauopathies/pathology , Neurons/metabolism , Neurons/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Spermidine/metabolism , Disease Models, Animal , Lysosomes/metabolism , Drosophila/metabolism , Mental Retardation, X-Linked
16.
Cell Death Dis ; 15(5): 331, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740775

Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aß1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, ßamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.


Alzheimer Disease , Cytochromes c , Mitochondria , Neurons , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Animals , Cytochromes c/metabolism , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Rats , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial , Ubiquitination , Humans , Apoptosis , Cell Death , Rats, Sprague-Dawley , Disease Models, Animal , Endodeoxyribonucleases
17.
PLoS One ; 19(5): e0291183, 2024.
Article En | MEDLINE | ID: mdl-38713711

BACKGROUND: Mendelian randomisation (MR) is the use of genetic variants as instrumental variables. Mode-based estimators (MBE) are one of the most popular types of estimators used in univariable-MR studies and is often used as a sensitivity analysis for pleiotropy. However, because there are no plurality valid regression estimators, modal estimators for multivariable-MR have been under-explored. METHODS: We use the residual framework for multivariable-MR to introduce two multivariable modal estimators: multivariable-MBE, which uses IVW to create residuals fed into a traditional plurality valid estimator, and an estimator which instead has the residuals fed into the contamination mixture method (CM), multivariable-CM. We then use Monte-Carlo simulations to explore the performance of these estimators when compared to existing ones and re-analyse the data used by Grant and Burgess (2021) looking at the causal effect of intelligence, education, and household income on Alzheimer's disease as an applied example. RESULTS: In our simulation, we found that multivariable-MBE was generally too variable to be much use. Multivariable-CM produced more precise estimates on the other hand. Multivariable-CM performed better than MR-Egger in almost all settings, and Weighted Median under balanced pleiotropy. However, it underperformed Weighted Median when there was a moderate amount of directional pleiotropy. Our re-analysis supported the conclusion of Grant and Burgess (2021), that intelligence had a protective effect on Alzheimer's disease, while education, and household income do not have a causal effect. CONCLUSIONS: Here we introduced two, non-regression-based, plurality valid estimators for multivariable MR. Of these, "multivariable-CM" which uses IVW to create residuals fed into a contamination-mixture model, performed the best. This estimator uses a plurality of variants valid assumption, and appears to provide precise and unbiased estimates in the presence of balanced pleiotropy and small amounts of directional pleiotropy.


Mendelian Randomization Analysis , Mendelian Randomization Analysis/methods , Humans , Alzheimer Disease/genetics , Monte Carlo Method , Multivariate Analysis , Computer Simulation , Genetic Variation , Software
18.
J Prev Alzheimers Dis ; 11(3): 701-709, 2024.
Article En | MEDLINE | ID: mdl-38706286

BACKGROUND: The polygenic risk score (PRS) aggregates the effects of numerous genetic variants associated with a condition across the human genome and may help to predict late-onset Alzheimer's disease (LOAD). Most of the current PRS studies on Alzheimer's disease (AD) have been conducted in Caucasian ancestry populations, while it is less studied in Chinese. OBJECTIVE: To establish and examine the validity of Chinese PRS, and explore its racial heterogeneity. DESIGN: We constructed a PRS using both discovery (N = 2012) and independent validation samples (N = 1008) from Chinese population. The associations between PRS and age at onset of LOAD or cerebrospinal fluid (CSF) biomarkers were assessed. We also replicated the PRS in an independent replication cohort with CSF data and constructed an alternative PRS using European weights. SETTING: Multi-center genetics study. PARTICIPANTS: A total of 3020 subjects were included in the study. MEASUREMENTS: PRS was calculated using genome-wide association studies data and evaluated the performance alone (PRSnoAPOE) and with other predictors (full model: LOAD ~ PRSnoAPOE + APOE+ sex + age) by measuring the area under the receiver operating curve (AUC). RESULTS: PRS of the full model achieved the highest AUC of 84.0% (95% CI = 81.4-86.5) with pT< 0.5, compared with the model containing APOE alone (61.0%). The AUC of PRS with pT<5e-8 was 77.8% in the PRSnoAPOE model, 81.5% in the full model, and only ranged from 67.5% to 75.1% in the PRS with the European weights model. A higher PRS was significantly associated with an earlier age at onset (P <0.001). The PRS also performed well in the replication cohort of the full model (AUC=83.1%, 95% CI = 74.3-92.0). The CSF biomarkers of Aß42 and the ratio of Aß42/Aß40 were significantly inversely associated with the PRS, while p-Tau181 showed a positive association. CONCLUSIONS: This finding suggests that PRS reveal genetic heterogeneity and higher prediction accuracy of the PRS for AD can be achieved using a base dataset and validation within the same ethnicity. The effective PRS model has the clinical potential to predict individuals at risk of developing LOAD at a given age and with abnormal levels of CSF biomarkers in the Chinese population.


Alzheimer Disease , East Asian People , Genome-Wide Association Study , Multifactorial Inheritance , White People , Aged , Female , Humans , Male , Middle Aged , Age of Onset , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , China/epidemiology , East Asian People/genetics , Genetic Heterogeneity , Genetic Predisposition to Disease , Genetic Risk Score , Risk Factors , tau Proteins/cerebrospinal fluid , tau Proteins/genetics , White People/genetics
19.
J Prev Alzheimers Dis ; 11(3): 749-758, 2024.
Article En | MEDLINE | ID: mdl-38706291

Alzheimer's disease and its comorbidities pose a heavy disease burden globally, and its treatment remains a major challenge. Identifying the protective and risk factors for Alzheimer's disease, as well as its possible underlying molecular processes, can facilitate the development of interventions that can slow its progression. Observational studies and randomized controlled trials have provided some evidence regarding potential risk factors for Alzheimer's disease; however, the results of these studies vary. Mendelian randomization is a novel epidemiological methodology primarily used to infer causal relationships between exposures and outcomes. Many Mendelian randomization studies have identified potential causal relationships between Alzheimer's disease and certain diseases, lifestyle habits, and biological exposures, thus providing valuable data for further mechanistic studies and the development and implementation of clinical prevention strategies. However, the results and data from Mendelian randomization studies must be interpreted based on comprehensive evidence. Moreover, the existing Mendelian randomization studies on the epidemiology of Alzheimer's disease have some limitations that are worth exploring. Therefore, the aim of this review was to summarize the available evidence on the potential protective and risk factors for Alzheimer's disease by assessing published Mendelian randomization studies on Alzheimer's disease, and to provide new perspectives on the etiology of Alzheimer's disease.


Alzheimer Disease , Mendelian Randomization Analysis , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology , Humans , Risk Factors , Causality
20.
Nat Commun ; 15(1): 3776, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710707

The causes of temporal fluctuations in adult traits are poorly understood. Here, we investigate the genetic determinants of within-person trait variability of 8 repeatedly measured anthropometric traits in 50,117 individuals from the UK Biobank. We found that within-person (non-directional) variability had a SNP-based heritability of 2-5% for height, sitting height, body mass index (BMI) and weight (P ≤ 2.4 × 10-3). We also analysed longitudinal trait change and show a loss of both average height and weight beyond about 70 years of age. A variant tracking the Alzheimer's risk APOE- E 4 allele (rs429358) was significantly associated with weight loss ( ß = -0.047 kg per yr, s.e. 0.007, P = 2.2 × 10-11), and using 2-sample Mendelian Randomisation we detected a relationship consistent with causality between decreased lumbar spine bone mineral density and height loss (bxy = 0.011, s.e. 0.003, P = 3.5 × 10-4). Finally, population-level variance quantitative trait loci (vQTL) were consistent with within-person variability for several traits, indicating an overlap between trait variability assessed at the population or individual level. Our findings help elucidate the genetic influence on trait-change within an individual and highlight disease risks associated with these changes.


Apolipoproteins E , Biological Specimen Banks , Body Height , Body Mass Index , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Humans , United Kingdom , Male , Female , Aged , Middle Aged , Body Height/genetics , Longitudinal Studies , Apolipoproteins E/genetics , Anthropometry , Mendelian Randomization Analysis , Bone Density/genetics , Body Weight/genetics , Adult , Alzheimer Disease/genetics , Genome-Wide Association Study , Lumbar Vertebrae , Alleles , UK Biobank
...